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Abstract— In this paper, Part 1 of 2, we derive the in-
cremental equations of motion for a membrane to be used
in simulations of gossamer spacecraft and, in particular, of
precision inflatable structures. A boundary integral formu-
lation is also presented, as a promising alternative to the
finite element derivation. Some numerical results complete
the paper. A discussion on control problems posed by large
membrane structures in space will be the subject of Part 2.
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I. INTRODUCTION

The purpose of this paper is to shed some light on the
dynamics and control problems one faces when modeling
and analyzing gossamer-type spacecraft such as antennas
built from inflatable structures, reflecting surfaces such as
solar sails, and heat control surfaces such as solar shields.
The term gossamer signifies something light, delicate, in-
substantial, or tenuous. Examples are: a film of cobwebs
floating in air; a large, ultra-lightweight system, packaged
into a small launch volume. Typically, a gossamer space-
craft implies that its subsystems are highly-integrated with
a thin structure performing multiple functions. It possesses
extensive adaptive capabilities, eventually capable of recon-
figuring or evolving in response to changing mission condi-
tions. Because of these attributes, gossamer systems offer
breakthrough reductions in mission cost.

Gossamer spacecraft at the present moment in time may
be classified in those used for large apertures and in those
used for solar sails and solar shields. Both types present
their own problems when it comes to modeling, simulation,
and control. Inflatable structures have been proposed as a
low cost alternative for large apertures in space. One of the
problems that inflatable large apertures present is the ne-
cessity of reaching a high surface accuracy for the inflated
membrane reflector, in order for the antenna to perform
satisfactorily at the required electromagnetic bandwidth.
For a radio-interferometric mission such as ARISE (Ad-
vanced Radio Interferometry between Space and Earth),
the expected surface accuracy error on the 25 meter inflat-
able dish is below 1 mm rms. Figure 1 shows the ARISE in-
flatable antenna, and points out some of the fields in which

Copyright © 2001 by the American Institute of Aeronautics and
Astronautics, Inc. The U.S. Government has a royalty-free license to
exercise all rights under the copyright claimed herein for Governmen-
tal purposes. All other rights are reserved by the copyright owner.

mooﬁom@oz&dm author, marco@grover.jpl.nasa.gov

technological advancements are necessary for the mission
to become a reality.

The effective surface accuracy of an inflatable antenna,
depends on many factors such as: systematic manufac-
turing errors, long-term ageing or creep of the polymeric
membrane, quasi-static thermal distortions, and dynamic
noise propagating from cooling equipment or attitude con-
trol devices. Even if in an ideal world most of these errors
could be compensated by active means, there always re-
mains a basic surface error. This surface error, expressed
as some measure of difference between the real surface and
the design paraboloid, is what the coefficients of the Zernike
polynomial try to map. A pictorial representation of the
first six Zernike polynomials for a circular optical element
is depicted in Figure 2.
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Figure 1. Interdisciplinary requirements for inflatable
antennas.

Figure 2. A pictorial representation of Zernike’s
polynomials.

Using a finite element method, we have derived the incre-
mental equations of motion for a membrane to be used in



simulations of precision inflatable structures. A boundary
integral formulaton has also been presented, as a promis-
ing alternative to the finite element derivation. We also
summarize some of the modelling effort developed for the
DRDF Contract Shape Control of Inflatable Reflectors.

Some membrane models will be discussed. The idea to
develop these membrane models came from the need to
have a simulation tool that can deal with the dynamics of
membranes of inflatable structures, and with the following
characteristics: orthotropic or homogeneous linear elastic
material, large displacements and small strain. The proto-
type problem for such a membrane is an inflatable reflector
which, after inflation, assumes the form of a paraboloid.
Some studies have already been done on the inflation of
an otherwise flat membrane into a paraboloid [Ref.[1]]. It
turns out that a membrane that inflates is always under
a certain amount of pre-tension, which ensures that the
surface is reasonably free of wrinkles. Details of wrinkle
modeling or of the inflation procedure are not within the
scope of this study and require further investigation.

Of interest in this paper is the accuracy obtainable on
the final shape of this surface after inflation, and also the
method (or methods) to model and control this shape to a
pre-specified accuracy. This is the essence of shape control.

This paper is divided into several sections. First, we deal
with the basics of membranes subject to initial tension.
Second, we develop a finite element model of the dynamics
of a membrane that can be integrated in the MATLAB-
based IMOS (Integrated Modeling of Optical Systems) soft-
ware environment and that accurately models a membrane
undergoing inflation. We divide the derivation in method
of derivation, membrane kinematics, membrane dynamics,
and finite element model. A later section of this paper
deals with the validation of the element by comparing to
previous results existing in the literature. Another section
deals with alternative models which, because of time con-
straints, wait to be developed and implemented, but which
have already been laid out theoretically. The conclusion
and a list of references concludes this paper.

Figure 3. Kinematics of deformation of membrane
element.

II. MODELING OF AN ISOTROPIC MEMBRANE SUBJECT
TO PRESSURE, INITIAL TENSION, AND FOLLOWER
LOADS

We follow the development of [Ref.[3]] and the repre-
sentation of Figure 3 for the nonlinear analysis of thin
walled membranes with arbitrary geometry. We develop
a displacement-based finite element interpolation scheme
which includes the effects of initial tension, pressure load,
and follower loads. Follower loads are included to repre-
sent actuator forces acting, to a first approximation, in the
plane of the membrane. This is the case with embedded
piezoelectrics.

A. Membrane kinematics

Our particular case is that in which we use cartesian
rectangular coordinates (parameterized by the fixed basis
vectors e;) to describe the geometry, and homogeneous,
linear elastic constitutive equations. More details for the
general case of material response can be found in [Ref. [3]].
An element of membrane of undeformed area and thick-
ness {€, ho} deforms into an element of area and thick-
ness {Q, h}. We denote the undeformed configuration by
C . and the deformed configuration by C ;. We are deal-
ing with thin membranes, which means that the thickness
is much smaller than the smallest radius of curvature of
the membrane. We do not include bending effects. The
inclusion of bending effects is unnecessary, since a mem-
brane used for a space inflatable structure reacts only to
in-plane loads. As a matter of fact, the inclusion of an
initial pretension load is required for the membrane to be
able to support a minimum of bending stiffness (think of
the membrane of a drum), or to be able to support a ver-
tical load. A point (£,7) of the membrane surface initially
located at X=X;e; gets displaced into a point located at

(1)

where u is the displacement vector. The membrane may
have initial curvature, therefore initial base vectors Gy =
.WW and Go = wlwn can be derived. For an initially flat mem-
brane, they are Gy = (1 0 0 JandGz=(0 1 0 )
since £ = z and 7 = y. In the deformed configuration, we
also have:

x = X + u =x;e;

(2)

mNHumh._.:,nHAww 1+ 8 .WWV (3)

where (u, v, w) denote the components of the displacement
vector u in cartesian rectangular coordinates. The met-
ric coefficients of the undeformed and deformed membrane
surface can then be written as (o, 8 =1, 2):

Gag=Xa X

gr=Xitur=(1+% & u)

(4)
()

Jop = Xa "X

and allow the definition of the membrane strain tensor

1
Eup = 3 (9o — Gag) (6)



The strain tensor components can be assembled in vector
form as follows:

E=( Ey E» Ey ) (M

Since we adopt a finite element interpolation scheme, we

can write
(8)

where 8 is a matrix of interpolation coefficients, and ¢ the
vector of nodal displacements.

u = Sq

B. Membrane kinetics

To describe the kinetics of the membrane, we use the
Principle of Virtual Work, which states that for any ad-
missible displacement field u, the membrane deforms to
external loads so as the following variational functional is
made stationary: ,

Gayn (u,0u) = .\ hyp,i-6udQqo + 9)
Qo

\ h,S - EAQ, —
Qo
\ h,pn-dudQg —
Qo
\ hf.-0udQyg
Qo

where: éu is a displacement test vector function, p, is the
material density in C 4, ii the translational acceleration of
a point, S the second Piola-Kirchhoff stress tensor, E the
membrane strain tensor, p is the scalar pressure, n is the
vector normal to the surface in C 4, and f, is the vector
of external conservative or non-conservative (ie., follower)
forces acting on the membrane. Any forces due to control
action are represented by f,.

Let us summarize the development we are after in the
case of linear material response and small deformations.

Initial tension effects are a very crucial issue and may
significantly change the natural frequencies of the antenna
dish compared to the case in which initial tension is absent.
From a structural point of view, the work done by the
internal forces is composed of three additive terms:

o internal work due to the material properties, which comes
only from the linear part of the constitutive relationship
between stresses and strain, and which is constant for a
linearly elastic (even orthotropic) material;

o internal work due to initial displacements;

» internal work due to the initial force and moment com-
ponents.

Assuming that the initial configuration of the membrane
is statically equilibrated, the contribution of the initial dis-
placements is zero.

From a finite element point of view, the material and ini-
tial load work become the (linear) material stiffness matrix
and the geometrical stiffness matrix. In general, the geo-
metrical stiffness matrix, which depends on the load, is also
configuration dependent, in the sense that it also depends

on the rotational degrees of freedom in a very non-linear
fashion. In the case we restrict ourselves to linear struc-
tural dynamics, we must impose that the nodal rotations
¢ are small, i.e., such that sinf ~ 4.

In the case of the membrane reflector, the initial load
acts in the plane of the membrane with three components,
ie. the force resultant in the x direction N, the force re-
sultant in the y direction Ny, and the shear force resultant
Ny. Although the initial shape is curved, the deforma-
tion pattern should be such that the maximum angular
deformation is extremely small. The pre-load applied by
the turnbuckles ensures this. Since there are no localized
forces perpendicular to the plane of the membrane (only
distributed pressures of very low intensity compared to the
lateral pre-load), and the thickness is very small, the re-
sponse is localized to the membrane plane as a state of
plane stress. A membrane model is more adequate than a
shell model, since we expect the bending response to be a
lot more negligible than the in-plane axial response, and
because large rotations due to bending action do not take
place.

The problem is now reduced to that of designing a linear
elastic membrane element, with small rotational deforma-
tion, and subject to the effect of the initial in plane load,
pressure load, and follower forces.

The equilibrium equations of an element of the mem-
brane initially located on the x-y plane are

ON; = ON,, _
E + 3y +p., =0 (10)
in the x direction,
ONgy = ON,
= 11
in the y direction, and
7] 0z 0z o 0z Oz
—(Ny— —)+=—(Nyy=—+N,— . =0 (12
Q&A2a®a+2a@mwv+®@A Yoz ﬁwm\v.r% 0 (12)
in the z direction, where
N, = \st&N (13)
i
N, = [oydz (19)
t
Nzy = Ny = \Qee&m (15)
i

and t is the membrane thickness. Neglecting terms of order
higher than the second, the strain-displacement relation-
ships are:

ou wmﬁ
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The presence of the squared terms is necessary to incor-
porate the effect of the initial tension. In fact, neglecting
some small terms, the potential energy contribution asso-
ciated with the initial stress effect is given by

. }\o Ow Sw

2 Y or m.t
The resultant membrane element stiffness matrix is given
by the term caused by the initial stresses, which results
in contributions to the nodal rotations 6, and 8, compo-
nents, in addition to the linear elastic term which because
of the plane stress assumption acts on the nodal u and v
components.

Once the membrane element has been modified this way,
a procedure is needed to compute the initial stresses. This
procedure can only be iterative in nature, but a first order
approximate solution would include a constant load at the
membrane rim location. This constant load is caused by
the pretension at the constant force springs, may be as-
sumed equal to a constant value at the beginning of the
simulation, and consists of a radial and a circumferential
component. Given the load on the rim, an equilibrium solu-
tion can be computed for the whole membrane at the initial
step, and the resulting static deformation of the membrane
surface will not change in time. A more accurate analysis
of the deformation of the membrane requires the updat-
ing of the deformation of the membrane during simulation.
This is an iterative process, and should also include the
initial stress terms in the struts and torus which provide
structural support for the membrane. Therefore, an ini-
tial stress matrix needs to be derived also for the beam
elements which model the struts. Again, this initial stress
stiffness matrix acts on the rotational degrees of freedom
associated with each beam element.

Note that the effect of material orthotropy enters the
elastic stiffness matrix. This matrix needs to be rederived
for orthotropy, but it can be done in a straightforward man-
ner since the difference with respect to the case of isotropy
lies only in a different constitutive tensor linking stress to
strain components.

ow ow
<§Aﬂvm+2&.&vw+w2& dzdy (19)

C. Residual and Tangent Stiffness derivation

Upon linearizing 9 by taking the directional derivative in
the direction of an increment Au, we obtain the following
result:

AGuyn (0, 6u) - Au = \ hop, Ali-SudQ + (20)
Qo

\ h,AS - 6Ed)g +

Qo

\ h,S - AEdQ, —

Qo

\ h,pAn-dudYg —

Qo

\ hy Af.-6udSp
Qo

Upon substituting equation 8 into 9, we derive the tangent
matrices as follows. The first term of this expression leads
to the inertia matrix. The second term leads to the mate-
rial stiffness matrix. The third term leads to the geometric
stiffness matrix. The fourth term leads to the pressure
stiffness matrix. The last term leads to the follower load
matrix. Equation 9 also represents the work performed by
the residual generalized forces acting on the structure any
time the displacement variation du from any intermediate
equilibrium configuration is different from zero. Therefore
equation 9 defines the residual load vector.

The total stiffness matrix is given by

Kr =K.+ K, +K, + K¢ (21)
and is obviously unsymmetric on account of the pressure
and follower loads.

C.1 Inertia matrix

The inertia matrix is simply:

M= [ h,p ST -SdQ, (22)

Qo

C.2 Material stiffness matrix

To compute the material stiffness matrix, we need the
constitutive equation. For a homogeneous, isotropic, and
linear elastic material, the constitutive equation may be
written as

S=C-E (23)
where C is a matrix derived from the elasticity tensor, and
which contains terms depending only on the Young’s mod-
ulus E and Poisson’s ratio v. The strain-displacement re-
lationship is also needed. The exact representation is given
in equations 16, 17, and 18. The linear strain vector does
not include any contribution from the displacement w, and
may be written as:

Z\RH

]

Ejin = A Ny,y W Qﬁ:e + ,\<ehv v q Aw\b
where Ny, and N, represent the derivatives of the shape
functions associated with the u and v displacements. In
incremental form:

AEj, =BSAq (25)
where B is an operator matrix. Consequently, the linear
elastic material stiffness matrix becomes:

Ke= [ h,LTCLdQ,
Q0

(26)

where L = ( Nus Nuy 3 (Nuy+ N,z) ). Since natu-
rally a membrane has no stiffness in the w direction, there
is no contribution from the w displacement.



C.3 Geometric stiffness matrix
The nonlinear terms of the strain tensor may be written
as follows:

(27)

muno::a

L oF (NE Ny + NE Ny +NE Nos)a | ©
= 5|« 2%«25 + zm”«zé +NL Ny.,)q
Qﬂ. 2:&2:.% + 2<,xZ<Q + Zﬂ‘xz,ﬁ%v q
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%Duw:o:::; = QQHQHHDD AwOv
%DHSO&.:SNN - Amnu.ﬁ, Q.NN DD,
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Therefore, we can write that the internal work contribution
is as follows:

A [ h,S. 6EdQ,
Qo
\ h,AS - dEdQg + \, h,S-0AEdQ, =
Qo Qo

h

(o

(AEf, COEyy,) do +

5;\

Ry (AE, COEnontin) 4 +

ho (AEgoninCOEin) dQ +

Ry (AEqoninCOEnontin) 4 +

h, (STSAE),) df +

31)

\ hy (ST6AEnoniin) dS%
Qo

The first term is the linear elastic material stiffness matrix.
The geometric stiffness matrix is therefore derived as:

K, \ h, (ST6AEs) d (32)
Qo
+\, ?o AMHQDEBOEESV &m.wo
Qo

\ Ry (ST AEnontin) d%
Qo

Using 30, we obtain:

K, = h, (S11G11 + S22G22 + 2812G12)d2o (33)

Qo

The remaining terms in 31 pertain to a true nonlinear anal-
ysis, and are higher order displacement-dependent matrices
which we neglect since we adopt an incremental solution
method.

C.4 Pressure load stiffness matrix

The pressure load stiffness matrix needs a particular
derivation. First, the unit vector normal to the deformed
surface can be written as:

= g1 X g2 (34)
g1 % g2
and the deformed element area is
_mu X MM_
dQ) = —=——2-d%) 35
Gy x G %0 (33)
so that the incremental work due to pressure is
(|Ag1 x g2| + |g1 x Agal)
ASIL, - bu = — h - dud
P Qo ° _A;u..“_. X AWN_ ¢
(36)

Here, Ag, = H,Aq and

Ag: x g2 = [~ (H2q) Hi| Aq=F;Aq  (37)

g1 X Aga = ngnvx ML Aq=F,Aq (38)
where (-)* denotes the skew-symmetric matrix associated
with the vector (-). Consequently, the pressure load matrix
becomes:

K, — - \ h,p (F1 + F2)T Sdf% (39)
Qo

C.5 Follower load stiffness matrix

The follower load stiffness matrix also requires a special
derivation. In incremental form, we have that the work is

g1 x g2

P NG Gl

ASTL; - u = — \ dQ%  (40)

Qo

But for conservative forces (i.e., their direction is always
along the e; basis)
Gy

e — mH_Q.H_

G2
|G2|

+fe, (41)

whereas for non-conservative or follower forces (i.e., their
direction follows the deformation)

£ =f, 2% 1, B2

e ea T %M
' _mu_ N_mw_ A v



Also,
Af,=f, A va A Amv =2 Aq (43)
g1 lg2]
and the follower load stiffness is
Ke — — =Tg 181 X 83| o
£ o h, m_QH < Ga] Qo (44)
From 43, we have that
A Alm.wv — |2 e Hle | o aq )
|g1] g1 (g1))
A Omlw_v =TyAq (46)
and consequently
= H..».mu Ty + m.mn Ty AA.NV

For conservative forces, there is no tangent stiffness matrix,
and the residual vector takes the general form

F; =

n, ST, 181 X &2 dQ
0 1=

48
Q0 |G1 x G| (48)

ITII. MODELING OF WRINKLING IN THE MEMBRANE

This section is purely descriptive, and for illustrative
purposes only. A photograph of a Fluorinated Polymide
film with embedded rip-stops, used in inflatable spacecraft
work, is shown in Figure 4. One may notice the extensive
wrinkling present in the surface. These wrinkles partially
disappear when the film is subjected to gas pressure from
the inflation equipment. More generally, some wrinkles re-
main after inflation that have to be eliminated actively.
When the film is packaged and folded, occasional creases
may form, which sometimes are conducive to local cracking
and peeling. This is of course a very negative condition, as
cracks and puncturing in the film are also sources of local-
ized electrostatic charging, and arcing may also occur with
destructive effects for the whole structure.

There are two different schools of thought that have dealt
with the modeling of wrinkling membranes. One school of
thought [Roddeman, Schrefler, et al.] solve the problem by
traditional finite elements. However, the second derivative
of the strain energy becomes ill-conditioned when a part of
the structure becomes slack once a wrinkle has formed, be-
cause the elastic moduli vary discontinuously across the
boundaries of various sub-domains in strain space that
comprise the domain of the strain energy function. There-
fore these finite element based methods typically involve
iterative algorithms that eliminate compressive stress in
each stage of an incremental loading procedure. Another
school of thought [Pipkin, Steigmann, et al.] is based on
the concept of a relaxed strain energy. This is a reformula-
tion of the problem so that the strain energy takes different
forms in different regions of strain space, associated with
the state of strain corresponding to a tense, wrinkled, or

completely slack condition. The construction of the com-
posite strain energy function is determined a priori from
minimum energy considerations. When the relaxed strain
energy is used, compressive stresses are excluded automati-
cally. A future paper will deal with wrinkling modeling and
control of wrinkling processes in ultra-lightweight space ve-
hicles.

Figure 4. What a Fluorinated Polyimide film with
embedded rip-stops looks like.

IV. BOUNDARY INTEGRAL FORMULATION

In this section, we describe a theoretical development
which can be applied to the development of efficient shal-
low shell elements. Although in this paper we focus on
membrane models, this is section applies to shells, i.e. ma-
terial surfaces where bending deformation are not entirely
negligible. In this derivation, we adopt a boundary in-
tegral approach with the objective in mind of developing
a more efficient finite element interpolation scheme with
less number of nodes (boundary integral formulations have
the advantage of reduced dimensionality since they retain
boundary nodes only, and assume an exact solution in the
interior of the domain). Furthermore, we adopt a mixed
variational formulation, in which not only displacements,
but also stresses are interpolated. A mixed method has
the advantage that it is equivalent to a reduced integration
of the bending terms. Consequently, the ubiquitous shear
locking problem of shells is entirely avoided. This result
in a very efficient interpolation scheme for dynamics anal-
ysis of membranes in which bending action is not entirely
negligible.

We assume a shallow shell theory, i.e. the deviation of
the real surface from a flat surface is small compared to
the principal curvatures. See Figure 5. We assume homo-
geneous, isotropic, linear elastic material, negligible shear
deformation and rotary inertia, constant thickness.
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Figure 5. Surface stresses in shallow shell

Denoting quantities on the shell surface identified by its
midsurface z = z(z,) by the subscripts (o, 8 = 1,2), and
by Rag the initial curvatures, we may write the strain-
displacement, or compatibility equations as:

1 2w
€af = 5 | Ua T UL T WaW,g+ = (49)
2 .NNQE
where €3 mHo the components of the strain tensor and
Rop = The constitutive equations can be written
as:

N“QE
(50)

where N,g are the components of the EmEg.mbm surface
stress, and Copys the constitutive tensor (C' = J is the
tensile stiffness). The in-plane equilibrium equations are:

(51)

.2.9@ - QQGJ& Eyé

Nap,p + ba = plia
and the out-of-plane equations are:

(Napwg) o + b3 + Nag 2,08 = pii (52)

The boundary conditions on the boundary where displace-
ments are prescribed (T, T',) are uq = Uoand w = W, and
the boundary conditions on the boundary where tractions
are prescribed (T'y,T,) are Nogng = B, and V,, = V,,
respectively.

Using a weighted residual approach, we may write the
in-plane and out-of-plane equilibrium as:

\ (Nag.g -+ bor — plia) ud = (53)
Q

\ (P — Poy) wodl +

\ﬁ (T — 0 9 (u) dT

and

“ TZ%@E NMHM
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+ (b3 — bﬁ\; w*dQ (54)

where (-)* denote test function in stress and displacements.

Using the compatibility equations on the constitutive
equations (i.e., compatibility is satisfied a priori), the sur-
face stresses may be written as the sum of a linear part and
a nonlinear part as follows:

where N, s 1s the linear part
2? = C(u, +vuzp2) (56)
me = C(ug2+vu1,)
/ 1
Ny = MQ (1—v) (u1,2 +uz,1)
N (n v is the nonlinear part
n C
N® = 3 (w2 + vw?) (57)
ND = m (w? +vw?
N® = WQ (1-v)wiwe
and
1 1
= — —_ 58
L Ry * N\mwm (58)
K = IH|. +v !
2 7 Ry Rn
1—-v
K12 = Rio

Since the material is linear elastic and isotropic, we may

write that

Zﬁm\;wb = Lapys \:.fmﬁwvu = 2\3 A v@f@ Amwv
where .Z aBvys Up g Also, since N,gng = po, we may
write gmﬁ

Pa = Nogng + NPng + Cragwng (60)

Also define po = (PayPa)s o = (UasTo) o0 Ty, Ls), and
Nygng = pg
Using the divergence (Gauss) theorem on eq.53 and on

eq. 54, and after some tedious algebra, one obtains the
modified variational statements

0 = \ﬁ N (65) 5 ta] A2+
[
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(n)
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0 =
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(w —w) V,xdl
T
In this form, these equations maybe written in incremental
form, so that the residual vector and the tangent stiffness
can be derived. In this mixed formulation, the stresses

AZM? %%%w“ <Mv may be interpolated with interpola-
tion functions of lower order than the displacements, mak-
ing the formulation easier to implement. In-plane and

bending-type stresses are included automatically. Follower
type loads can also be included in the b, vector.

V. SOLUTION ALGORITHMS FOR STATIC AND DYNAMIC
ANALYSIS

In order to compute the initial shape of the membrane
after inflation, the following static nonlinear analysis pro-
cedure is followed:

« apply the pressure load, and compute the residual vector
res and tangent stiffness matrix K,

e solve for the displacement increment as Aq = NmH.wmmw
» update displacements to Quew= Aorat+AQ;

« check norm of res or norm of Aq as a check of conver-
gence;

« if norms are within tolerance, apply next load step, oth-
erwise continue the iteration.

The dynamic equilibrium analysis, also required for con-
trol analysis, is slightly different, and proceeds as follows:
o given the equilibrium solution (state vector) in terms of
nodal displacements q and velocities ¢, use the global stiff-
ness matrix K computed at time t to compute the nodal
loads from f = Ky-q;

e compute the global mass matrix, the global stiffness ma-
trix (including initial stress terms), the global damping ma-
trix, and the external force vector, including control force
terms at time ¢ + dt;

» update the state vector according to the time integra-
tion scheme (a possible chice is a Newmark type predictor-
corrector scheme);

o check that the residual of forces (internal less external
forces) at time ¢ + dt is smaller than a pre-set tolerance,
otherwise recompute;

e g0 to the next time step.

All these methods can be considered to be homotopy
methods. More generally, a solution method capable of
tracing geometric or material instabilities such as singular-
ities of the tangent stiffness matrix must be homotopic in
nature.

VI. SOME APPLICATIONS
A. ARISE Spacecraft model

In this case half of an inflatable envelope is metallized
to reflect both RF and sunlight. A simple model of the

ARISE inflatable antenna was built in IMOS. The simu-
lation model of the ARISE spacecraft is shown in Figure
6. The lenticular envelope is supported by a torus, which
is joined to a spacecraft bus by struts (3 here). The torus
and struts are to be inflatable, but later rigidized (e.g. by
cooling past the glass transition temperature). The model
is an off axis parabolic reflector, with scalable diameter,
and focal length f = D/2. The finite element mesh model,
shown in Figure 6, uses Bernoulli-Euler beam elements to
model the struts and torus. A simple circular mesh gener-
ator was added to IMOS to allow a set of plate or mem-
brane elements to model the lenticular structure. Once the
model was built, mode shapes were generated. Represen-
tative material properties were used for this 25m diameter
case. Figure 7 shows the input excitation given by a speci-
fied command of one of the reaction wheels located on the
spacecraft bus. Figure 8 shows the dynamic deformation
at one point on the torus, also modeled with beam finite
elements. A more detailed simulation using the membrane
elements developed in Part 1 of this paper will be described
in Part 2.
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Figure 6. ARISE simulation model.
B. Inflatable modeling package for IMOS

Various options were considered here for the membrane
modeling, and were developed for IMOS to at least a the-
oretical level. Early efforts included a linear shell element;
a linear membrane element with tension; a shell element
with pre-stress. These isoparametric [2] elements are capa-
ble of providing accurate results in the small deformation
regime, but may be used within a corotational formulation
for large deformations. After these investigations we de-
cided upon developing a nonlinear membrane shell element
based upon previous work in the area of rubberlike models.
The element uses nonlinear kinematics and a linear mate-
rial constitutive equation and so is capable of modeling
large deformations. Both 3 and 6 node triangular versions
of the element have been coded into matlab/IMOS. Us-
ing the principle of virtual work, the residual and tangent
stiffness are derived including effects of pre-stress, geomet-
ric nonlinearities, pressure, and follower loads. These de-



velopment have been extensively described in the previous
sections of this paper. Using a homotopy approach, we
have simulated the inflation process (Figure 9), and effects
of boundary changes including control forces. Code has
been developed to determine surface displacements upon
application of the inflation pressure. Figure 10 shows the
displacement of the torus when the surface is constrained
to be on a parabolois. The code also computes surface er-
rors in an rms sense, and decomposes the surface error into
Zernike polynomials, as shown in Figure 11. More details
on these numerical developments will be described in Part
2 of this paper.

VII. CONTROL AND STABILIZATION OPTIONS FOR
(GOSSAMER SPACECRAFT

Given the above element some limited shape control ex-
periments have been done to investigate the effectiveness
of turnbuckles for control. While turnbuckles cannot re-
move all surface errors (in particular the errors in inflating
a uniform, flat membrane) they are quite effective in reduc-
ing errors such as those created by incorrect deployment of
the torus structure. More details on shape control of mem-
brane reflectors will be will be discussed in Part 2 of this
paper.

Robust and realistic control, sensing, estimation, and
system identification methodologies and algorithms are
common to most of the gossamer spacecraft envisioned in
NASA missions. This commonality stems from the fact
that their control design and performance is very sensitive
to modeling errors. These may arise from unmodeled flex-
ibility in large structures, unmodeled sensor and actuator
dynamics, and uncertainties in the interaction with the en-
vironment. The long life expectancy of these envisioned
missions (3 to 5 years) requires a sensing and actuation
scheme which must be robust to uncertainties in the plant
model. There is a variety of dynamics and control issues
associated with gossamer-like spacecraft, which have only
begun to be addressed. Some are common to other space-
craft as well, but in general they present additional prob-
lems. In general, the control problem for gossamer space-
craft is multifaceted [4], [5], [6], [7], [8], [9], [10]. There exist
problems arising from shape errors originating in manufac-
turing errors, fabrication errors, and errors deriving from
dynamic noise and ageing. In terms of attitude control, as
structures get larger, and more flexible, control-structure
interaction becomes the dominant cause for possible insta-
bility. Translational control becomes necessary if the gos-
samer spacecraft must fly in a formation. Pointing control
is very demanding when inflatable apertures are used in
interferometric instruments. Momentum control becomes
necessary to compensate for solar pressure disturbances.
Shape control represents a challenge for maintenance of
surface accuracy. Deployment control is advisable, since
inflatable structures are tightly packaged with tendency to
crease formation in the film material, which has an influ-
ence on the deployment trajectory. Specifically:

o Attitude Stabilization and Pointing Control: solar sail,
sunshades, and inflatable reflector structures are light, pos-

sibly very large, and hence simultaneously quite flexible.
The pointing issues of large flexible spacecraft cannot be
addressed as if they were more traditional structures. The
problem is difficult because a high control bandwidth is
necessary for tight requirements, relative to the low fre-
quency structural modes.

» Momentum Control: One issue is that solar torques will
be large because the surface is large and opaque, and the
center of pressure to center of mass offset is also large. This
can lead to substantial propellant requirements to maintain
pointing, as in the ARISE study. For very large reflectors,
the propellant mass alone could be prohibitive.

e Shape Control: To control the shape of a sunshield, so-
lar power array, or an inflatable reflector there are a va-
riety of techniques that have been considered, but none
have been demonstrated in flight: active turnbuckles, ca-
ble networks, piezo-electric polymer membrane - PVDF,
piezo-optical polymer membrane, electrochromic patches,
and laser keratectomy. In general, the membrane must
be supported by a frame, possibly an inflatable ring or
torus. The membrane itself may have a rim or serpentine
structure that distributes the attachment load over the thin
membrane. Recently, constant-force springs have been pro-
posed for use to make the membrane less sensitive to the
deployed position of the torus.

o Thrust Vector/Steering Control: this type of control is
very specific to solar sails, and results from a combination
of both deltaV control and attitude control required to keep
the sail pointed towards the Sun.

VIII. CONCLUSIONS

The purpose of this paper is to shed some light on the
dynamics and control problems one faces when modeling
and analyzing gossamer-type spacecraft such as antennas
built from inflatable structures, reflecting surfaces such as
solar sails, and heat control surfaces such as solar shields.
Using finite elements, I have derived the incremental equa-
tions of motion for a membrane to be used in simulations of
precision inflatable structures. A boundary integral formu-
lation has also been presented, as a promising alternative
to the finite element derivation. Some numerical results
obtained with the formulation outlined in this paper are
also presented. A discussion on control problems posed by
large membrane structures in space will be included in Part
2.
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Figure 7. Excitation Input: reaction wheel torque for
re-orientation vs. time.
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Figure 9. Focal Length vs. Inflation Pressure for Different
Pre-stress levels.
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Figure 10. Displacement of torus and constant force
springs under inflation pressure in order for the reflector
to produce a parabolic surface.
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Figure 11. Zernike’s coefficients of surface error of

inflatable lenticular dish.



